Enrollment No:	 Exam Seat No:	

C.U.SHAH UNIVERSITY

Winter Examination-2015

Subject Name: Real Analysis

Subject Code: 4SC06RAC1 Branch: B.Sc.(Mathematics)

Semester: 6 Date:19/05/2016 Time: 02:30 To 05:30 Marks:70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	What is $\lim \inf a_n$?	(1)
	b)	Is $\sum_{n=1}^{\infty} \frac{1}{n}$ divergent?	(1)
	c)	Define: Convergent sequence.	(1)
	d)	Following statement is true or false? Every Cauchy sequence is convergent.	(1)
	e)	Define : $L(P, f)$.	(1)
	f)	Following statement is true or false? Every convergent sequence is bounded.	(1)
	g)	Write the name of any two test of positive term series.	(1)
	h)	Find $\lim \sup p = \{1,-1,1,-1\}$.	(1)
	i)	$\lim u_n = 2$, then $\sum u_n$ must be divergent. Following statement is true or false?	(1)
	j)	What is primitive of function $f(x)$?	(1)
	k)	Define: monotonic increasing sequence.	(1)
	1)	What is sequence of partial sum of series?	(1)
	m)	Define: Riemann Integrable function on $[a, b]$.	(1)
	n)	Following statement is true or false?	(1)
		The series $\sum \frac{1}{n^e}$ is convergent where $e = 2.718$.	

Attempt any four questions from Q-2 to Q-8

(II)

Q-2 Attempt all questions (14)

- Find $\lim Inf$ and $\lim Sup$ for the following sequence. a) **(6)**
 - $\{1+(-1)^n\}$ (I) $\{n(-1)^n\}$
- Using εm definition show that $\lim_{n \to \infty} \frac{3 + 2\sqrt{n}}{\sqrt{n}} = 2$. **b**)
- **(c)** What is oscillating sequence .Explain the types of oscillating sequence with **(3)** proper illustration.

(5)

Q-3		Attempt all questions	(14)
	a)	State and Prove Cauchy's general principle of convergence for the sequence.	(8)
	b)	Prove that the sequence $\{s_n\}$, where $s_n = \left(1 + \frac{1}{n}\right)^n$, is convergent and	(6)
		$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ lies between 2 and 3.	
Q-4		Attempt all questions	(14)
•	a)	State and prove D'Alembert Ratio test for the convergence of series.	(8)
	b)	Test the convergence for the series.	(6)
		$(1) \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \dots$	
		$(2)\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$	
Q-5		Attempt all questions	(14)
	a)	State and prove Leibnitz test for alternating series.	(5)
	b)	Define absolute convergence. Show that the series $\sum \frac{(-1)^{n+1}}{\sqrt{n}}$ is conditionally	(5)
	a)	convergent . State first many value theorem for integral calculus	(4)
Q-6	c)	State first mean value theorem for integral calculus. Attempt all questions	(4) (14)
Q-0	a)	Show that the bounded function f is Integrable on $[a, b]$ if and only if for each	(8)
	α,	$\varepsilon > 0$ there exist $\delta > 0$ and partition P with $\mu(P) < \delta$ and	(0)
		$U(P,f)-L(P,f)<\varepsilon$.	
	b)	Show that $3x+1$ is integrable on [1,2] and $\int_1^2 (3x+1) dx = \frac{11}{2}$.	(6)
Q-7		Attempt all questions	(14)
	a)	If f_1 and f_2 are two bounded and integrable function on $[a, b]$ then show that	(5)
	b)	$f = f_1 + f_2$ is also bounded and integrable on $[a, b]$. If a function f is monotonic on $[a, b]$, then show that it is integrable on $[a, b]$.	(5)
	c)	Find using Riemann sum $\int_{-1}^{1} x dx$.	(4)
	/	This using Richam sum $J_{-1} \lambda u\lambda$.	()
Q-8		Attempt all questions	(14)
	a)	If f is bounded and integrable on $[a, b]$ then $ f $ is also bounded and integrable on	(5)
		[a,b].	
	b)	State and prove Fundamental theorem of calculus.	(5)
	a)	ct	(4)
	c)	Show that: $\int_0^t \sin x dx = 1 - \cos t.$	(4)

